
Dronacharya College of Engineering

 Requirement analysis is a software engineering task that
bridges the gap between system engineering and software design.

System Engg.

S/w req.
analysis

S/w design

Participated by both the customer and developer

- Requirements Analysis

- Communication Techniques

 - Initiating the Process

 - Facilitated Application Specification Techniques

- Analysis Principles

 - Information Domain

 - Modeling

 - Partitioning

- Software Prototyping

 - Selecting the Prototyping Approach

 - Prototyping Methods and Tools

- The Software Requirements Specification

 - Specification Principles

 - Representation

3.Analysis Principles

Each analysis method has a unique point of view.

All analysis methods are related by a set of operational principles:

 - represent and understand the information domain

 - define the functions that the software

 - represent the behavior of the software

 - use models to depict information, function, and behavior

 - uncover the details in a layered fashion.

 - move from essential information toward to details

A set of guidelines for requirement engineering:

 - understand the problem before beginning to create the analysis

model

 - develop prototypes to help user to understand how human-machine

Interactions

 - record the origin of and the reasons for every requirement

 - use multiple views of requirements

 - prioritize requirements

 - work to eliminate ambiguity

A-The Information Domain

Software is built to process data, to transform data from one form to another.

The first operational analysis principle requires to exam the information domain.

Information domain contains three different views of the data and control:

 - information content and relationship:

 information content represent the individual data and control objects there

 are different relationships between data and objects

 - information flow:

 represents the manner in which data and control change as each moves through

 a system. Data and control moves between two transformations (functions)

 - information structure:

 represent the internal organization of various data and control items

 - data tree structure

 - data table (n-dimension)

B-Modeling

During software requirements analysis, we create models of the system to

be built.

The models focus on:

 “what the system must do, not how it does it.”

The models usually have a graphic notation to represent:

 - information, processing, system behavior, and other features

- Functional models
 Software transforms information. Three generic functions:

 - input, processing, output

- Behavior models
 Most software responds to events from the outside world

 A behavior model creates a representation of the states of the

 software and events that cause software to change state

 Data model
 shows relationships among system objects

 Functional model
 description of the functions that enable the

transformations of system objects
 Behavioral model
 manner in which software responds to events

from the outside world

7

Modeling

The models focus on:

 “what the system must do, not how it does it.”

Important roles of models:
 The model aids the analyst in understanding the

 information, function, and behavior of a system.

 The model becomes the focal point for review in the

 aspects of completeness, consistency, and accuracy of

 the specification.

 The model becomes the foundation for design,

 providing the designer with an essential representation

 of software.

 Process that results in the elaboration of data,
function, or behavior.

 Horizontal partitioning

 breadth-first decomposition of the system function,
behavior, or information, one level at a time.

 Vertical partitioning

 depth-first elaboration of the system function,
behavior, or information, one subsystem at a time.

9

Partitioning

Partitioning decomposes a problem into its constituent parts.

Establish a hierarchical representation of information (or function):

 - exposing increasing detail by moving vertically in the hierarchy

 - decomposing the problem by moving horizontally in the hierarchy.

SafeHome Software

Configure system Monitor sensors Interact with user

Poll for sensor event Activate alarm functions

Activate audible alarm Dial phone number

Horizontal partition

Vertical partition

4.Software Prototyping

In some cases, it is possible to apply operational analysis principles and derive a

model of software from which a design can be developed.

Selecting the prototyping approach:

1. Throwaway (Closed ended)
Here the prototype serves only to demonstrate requirements and is discarded

after the desired knowledge is gained.

Since the prototype is ultimately discarded it need not be maintainable or use

efficient algorithms.

2. Evolutionary (Open ended)
Once the prototype has been used and requisite knowledge has been gained it is

eventually incorporated into the final system.

Must exhibit all quality attributes of the final product.

Software Prototyping

Prototyping Methods and Tools:

 - Fourth Generation Techniques

 - Reusable Software Components

 - Formal Specification and Prototyping Environments

1. Fourth generation techniques :

• 4GLs reduce programming effort, the time it takes to develop software, and
the cost of software development. Report generators (Oracle reprots, QUEST,
GEM base)Screen generators (Oracle forms etc)Database Query Languages
(SQL, Ingres etc)

• These tools generate an executable code quickly and hence are ideal for rapid

prototyping

2. Reusable software components :

•Assemble rather than build the prototype by using a set of existing s/w

components

3. Formal Specification languages:

•Replace natural language specification

•Eg. Set notation , algebraic notation.

•There are tools which convert these formal language specifications into

executable code.

5.Software Specification

Specification principles:
 - Separate functionality from implementation

 - Develop a model of the desired behavior of a system

 - Establish the context in which software operates

 - Define the environment in which the system operates

 - Create a cognitive model rather than a design or implementation model

 - Specification is an abstract model of a real system

 - Establish the content and structure of a specification (easy to be changed)

Guidelines for representation:
 - Representation format and content should be relevant to the problem

 - Information contained within the specification should be nested

 -Diagrams and other notational forms should be restricted in number and

 consistent in use.

 - Representations should be revisable

Software requirements specification standard:

 IEEE (standard No. 830-1984) and U.S. Department of Defense

In many cases, a preliminary user’s manual should be provided to presents the software

as a black box.

